Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration.
نویسندگان
چکیده
Iron deficiency is associated with multiple health problems, including the cardiovascular system. However, the mechanism of action of iron-deficiency-induced cardiovascular damage is unclear. The aim of the present study was to examine the effect of dietary iron deficiency on cardiac ultrastructure, mitochondrial cytochrome c release, NOS (nitric oxide synthase) and several stress-related protein molecules, including protein nitrotyrosine, the p47phox subunit of NADPH oxidase, caveolin-1 and RhoA. Male weanling rats were fed with either control or iron-deficient diets for 12 weeks. Cardiac ultrastructure was examined by transmission electron microscopy. Western blot analysis was used to evaluate cytochrome c, endothelial and inducible NOS, NADPH oxidase, caveolin-1 and RhoA. Protein nitrotyrosine formation was measured by ELISA. Rats fed an iron-deficient diet exhibited increased heart weight and size compared with the control group. Heart width, length and ventricular free wall thickness were similar between the two groups. However, the left ventricular dimension and chamber volume were significantly enhanced in the iron-deficient group compared with controls. Ultrastructural examination revealed mitochondrial swelling and abnormal sarcomere structure in iron-deficient ventricular tissues. Cytochrome c release was significantly enhanced in iron-deficient rats. Protein expression of eNOS (endothelial NOS) and iNOS (inducible NOS), and protein nitrotyrosine formation were significantly elevated in cardiac tissue or mitochondrial extraction from the iron-deficient group. Significantly up-regulated NADPH oxidase, caveolin-1 and RhoA expression were also detected in ventricular tissue of the iron-deficient group. Taken together, these results suggest that dietary iron deficiency may have induced cardiac hypertrophy characterized by aberrant mitochondrial and irregular sarcomere organization, which was accompanied by increased reactive nitrogen species and RhoA expression.
منابع مشابه
Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase.
Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)-dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca(2+) concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, ta...
متن کاملApoptosis via Stimulating Mitochondrial Nitric Oxide Tamoxifen Induces Oxidative Stress and Mitochondrial
Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)–dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, tamoxi...
متن کاملProteomic analysis of peroxynitrite-induced protein nitration in isolated beef heart mitochondria.
Mitochondria are exposed to reactive nitrogen species under physiological conditions and even more under several pathologic states. In order to reveal the mechanism of these processes we studied the effects of peroxynitrite on isolated beef heart mitochondria in vitro. Peroxynitrite has the potential to nitrate protein tyrosine moieties, break the peptide bond, and eventually release the membra...
متن کاملpH profile of cytochrome c-catalyzed tyrosine nitration.
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrom...
متن کاملPhenotype of Transgenic Mice Overexpressed with Inducible Nitric Oxide Synthase in the Retina
BACKGROUND Unlike its constitutive isoforms, including neuronal and endothelial nitric oxide synthase, inducible nitric oxide synthase (iNOS) along with a series of cytokines are generated in inflammatory pathologic conditions in retinal photoreceptors. In this study, we constructed transgenic mice overexpressing iNOS in the retina to evaluate the effect of sustained, intense iNOS generation in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical science
دوره 109 3 شماره
صفحات -
تاریخ انتشار 2005